
Zeszyty Naukowe Wydziału Informatycznych Technik Zarządzania

Wyższej Szkoły Informatyki Stosowanej i Zarządzania

„Współczesne Problemy Zarządzania”

Nr 1/2014

FINITE AUTOMATA IN SOFTWARE MODELING WITH

SEMAPHORES AND DEADLOCK POTENTIAL

Boguslaw Schreyer*, Krzysztof Kosinski**

*Nipissing University, North Bay,

100 College Dr., Canada

** Wyższa Szkoła Informatyki Stosowanej i Zarzadzania,

01-447 Warszawa, Newelska 6, Poland

Abstract: From among many tools for concurrent software modelling

we have chosen in this paper the classic Finite Automata (FA). Their

quite intuitive properties and the respective graphs appeared to be a

very useful tool in Computer Science education. We have been using

the FA for years in our Operating Systems I class, mainly in modeling

the process synchronization and Critical Section (CS) problems. Now,

we want to extend this method for deadlocks and process scheduling

simulations. The intention of this paper is to develop an application of

the Finite Automata (FA): DFA (Deterministic Finite Automata) and

NFA (Nondeterministic Finite Automata) for software modeling in

which the binary semaphores are used and a deadlock may occur.

First, a classic case of two concurrent processes and two binary sema-

phores is investigated. Then, a graph of deadlock for any number of

processes and semaphores has been introduced. In order to represent

many semaphores on one graph, a compound graph has been created.

Keywords: model checking, concurrent systems, deadlocks, finite au-

tomata, semaphores.

1. Introduction

We have introduced the FA for CS problem modelling in our classes as de-

scribed in Schreyer and Kosinski (2010) and Schreyer and Bozic (2006). In general

terms, the subject of software modeling is related to Model Checking (Beier and

Kaoten, 2008), and to real time system modelling, validation and verification

(Lamport, 1974). We do not, however, restrict our current discussion to the Real

Time Operating Systems (RTS). The existing approaches use the tools such as

Timed Automata with Discrete Data [TADD], as in Rataj, Wozna and Zbrzezny

(2009), Transition Systems [TS] (Arnold, 1994), or Timed Automata (TA), as in

Rataj, Wozna and Zbrzezny (2009), Beier and Kaoten (2008), or UPPAAL (no

date).

B. Schreyer, K. Kosinski

46

In Stotts and Pugh (1994), a class of the parallel finite automata (PFA) have

been described and applied. The equivalence of this class to DFA and NFA was

demonstrated. A relation between this class of languages and the Petri net languages

has been shown. In Dragert, Dingel and Rudie (2008), the discrete-event system

(DES) has been applied. In Hirst, Yehetzkael and Mendelbaum (2003) the parallel

automata conflicts are discussed. Then, in Stolz (2007), an extension to a concept of

assertions, the temporal assertion, has been discussed. An example of a lock-order

reversal pattern indicating a potential deadlock in a concurrent program has been

given. Finally, in Monzón, Fernández and de la Puente (2011) a software architec-

tural evaluation in the Real Time systems is considered.

In our work we apply Finite Automata, and concentrate on a classic, concur-

rent Operating System program with possible deadlock (Silberschatz et al., 2012;

Tanenbaum and Bos, 2013; Sipser, 1997). We do not consider specifically an RTS.

An example of any number of processes and semaphores has been considered with a

deadlock between two processes. Keeping in mind an educational application, we

tried to generate the useful graphs of the NFA and DFA.

For the majority of cases, the actual implementations are based around the

counting (or general) semaphore concept. We decided to apply an original Dijkstra’s

binary semaphore, which is more convenient for graphical representation. We as-

sume that the processes share a very short critical section (CS) code; therefore, we

can concentrate on the non-preemptive shared CS. Due to the thread (ni) interleav-

ing, the number M of scheduling sequences for a given number N of processes con-

sisting of atomic sections is “exploding”, according to the following equation:

M=
(∑ 𝑛i)!𝑁

𝑖=1

∏ (𝑛i!)𝑁
𝑖=1

 , ni=n1,n2,…,nN

As an example: for N=3 processes, and n1=n2=n3= 3 atomic sections in each,

M=9!/(6*6*6)=1680. In order to concentrate on a general concept, rather than on

quantitative issues, we consider a limited number of processes and interleaving

threads. However, the number of all cooperating processes in a system, potentially

involved in a deadlock, is not limited. We select any two of them for deadlock anal-

ysis.

As the semaphores have no concept of an owner, any process can lock/unlock

each semaphore. The way the critical sections are implemented varies among operat-

ing systems. The busy waiting (BW) state is very common and important. The

spinlock semaphores may represent a problem in a multi programming system,

where a single CPU is shared among many processes. They have an advantage in

that no context switch is required. The spinlocks, if short, may be useful in a multi-

Finite automata in software modeling with Semaphores and deadlock potential

47

processor system, when applied to the threads, when one thread is spinning on one

CPU, while another thread is in a CS on another CPU (Silberschatz et al., 2012;

Tanenbaum and Bos, 2013; Sipser, 1997). At a kernel level, typically, critical sec-

tions prevent process and thread migration between processors and the preemption

of processes and threads by interrupts.

2. DFA application

Let us consider first a classic example of two processes (P1 and P2) and two

semaphores (Q and S), where a deadlock may occur (Figure 1). Each of the two pro-

cesses shown below is executed in a loop, basically sequentially, although a sequen-

tial execution can be interrupted by context switching and the execution is passed to

the other one of the two processes. Here, P is a wait() operation, and V is a signal()

operation. The modifications to the semaphore value in wait() and signal() opera-

tions are executed indivisibly (atomically).

The idea of using the DFA and NFA for software modeling is not new, but

rarely or at all not used in the OS texts (Silberschatz et al., 2012; Tanenbaum and

Bos, 2013).

P1

P(S)

P(Q)

Critical section CS

V(S)

V(Q)

P2

P(Q)

P(S)

Critical section CS

V(Q)

V(S)

Figure 1. The two processes considered, P1 and P2

Let be given a deterministic finite automaton (DFA): (R, Σ, δ, q0, F), where

R is a finite set of states,

Σ is a finite alphabet,

δ: R x Σ → R is the transition function,

q0 ϵ R is the start state, and

F ⊆ R is a set of accept states.

Let us distinguish the following elements of a DFA state: Qϵ{0,1}, Sϵ{0,1},

CSϵ{0,1}, Bϵ{0,1}. The (binary) semaphores Q and S may be equal either 0 or 1.

CS=0 if the CS is not being executed, otherwise CS=1. B=0 of there is no busy wait-

ing (or blocked) process, otherwise B=1. As the changes of the above values can be

done only by the semaphore operations, P and V become the members of the alpha-

bet - the edges of the graph. For any state transition, both the current state and the

B. Schreyer, K. Kosinski

48

alphabet members result in a new state. Analysis of the sequential execution of a

process in a loop defines the transition function δ. This function is defined in the

Table 1 below. In Table 1 a Ø means no transition from the given state R by a given

alphabet member Σ. At the beginning of the P1 execution both semaphores are equal

1: Q=1, S=1, also a CS is not being executed, therefore CS=0, and there is no pro-

cess busy waiting (or blocked), so that B=0. As the process is executed in an infinite

loop, there is no finite state. Or, we may assume it is in an initial state, since a whole

loop has been executed successfully.

R = {(Q, S,CS,B)}={1100, 1000, 0010, 0100},

Σ = { P(Q), P(S),V(Q),V(S)}

δ is given in the Table 1 below:

Table 1. A transition function δ
q0= (1100), and

F = (1100).

A graph of a process P1 from Figure 1 is shown below in Figure 2 (left). A

very similar graph of a process P2 is shown in Figure 2 (right). The P2 graph shows

different sequences of the P and V execution: first P(Q) and then P(S).

Figure 2. Process P1 (left) and P2 (right)

 Σ
 R

 P(Q) P(S) V(Q) V(S)

1100 Ø 1000 Ø Ø

1000 0010 Ø Ø Ø

0010 Ø Ø Ø 0100

0100 Ø Ø 1100 Ø

Finite automata in software modeling with Semaphores and deadlock potential

49

If the two processes run concurrently, we need to combine those two graphs.

We assume that both processes start with the initial value of Q=1 and S=1. CS is not

being executed, therefore CS=0, and there is no process in busy waiting state, i.e.

BW=0. Initial state is therefore the same for both processes: q0=1100.

At the same time, we need to distinguish the P and V operations running in

those two processes. Now we have 1P(), 1V() operations executing in a process P1,

and 2P(), 2V() operations in a process P2. Those are the user’s processes, not the

ones of the OS. The semaphores are not hardware supported. When a context switch

between those two processes takes place, one process is switched to the other’s pro-

cess code execution; therefore, some of the edges in one graph must now have a

number of the other graph.

Assume a process P1 starts the execution and an interrupt happens after P1

has executed its 1P(S). If a P2 executes now 2P(Q), both semaphores Q and S be-

come equal 0 and both processes are prevented from further execution. A deadlock

takes place. Similarly, if the sequence of the execution is: 2P(Q) first, then 1P(S). A

state 0001 reflects the deadlock. This situation is shown in Figure 3, where no edge

is originating from the state 0001.

In a state 0010 a process (P1 or P2) is executing in CS, therefore S=Q=0,

CS=1.

Figure 3. Possible deadlock state 0001

B. Schreyer, K. Kosinski

50

If another process is ready to enter the CS area, it will be blocked and put in-

to a waiting state by (P(S) in P1 or P(Q)in P2). The waiting process will be allowed

to CS only if a second V() operation is being executed (V(Q) in P1 or V(S) in P2).

Before a process reaches CS, both semaphores are set again to 0.

Therefore, a state becomes again 0010, which is true for both processes.

There may be a very short period of time when a process is blocked (P=0 and Q=0),

even if another process has already left a CS area (CS=0). The blocked process will

be allowed CS after the both Vs are executed. The graph neglects this short moment

of time and it is very short transitory process state 0001

When a process is in a state 0010 (CS=1), another process attempting to exe-

cute its code will be blocked (state 0011). After the given process executes both:

V(Q) and V(S), it allows a blocked process to enter CS (state 0010). This situation is

depicted in Figure 4 with appropriate edges between states 0010 and 0011.

Figure 4. CS=1, the processes are blocked (state 0011)

3. NFA Application

If there were more than two processes, the waiting queues would have more

than one process. Also, releasing those processes from the queue would require sev-

Finite automata in software modeling with Semaphores and deadlock potential

51

eral executions of V(Q) and V(S). This would modify the graph in such a way that

the loops of V() and P() would appear around the 0011 state as in Figure 5. This

modification of a graph introduces a new type of FA, namely, a nondeterministic

finite automaton (NFA):

R is a finite set of states,

Σ is a finite alphabet,

δ: (R x Σ) → Ƥ(R) is the transition function (Ƥ (R) is a power set of R),

q0 ϵ R is the start state, and

F ⊆ R is a set of accept states.

For the deadlock to occur, we need a sequence: iP(Q) then jP(S) or: jP(S)

then iP(Q) (i,jϵ{1,2}). As a result, both semaphores become equal zero, and they

create a deadlock. From the point of view of the above sequence, the number of the

process executing does not matter. Therefore, we can ignore the process number.

Also, a transfer between the two states: 0010 and 0011 does not depend on the pro-

cess number. Both segments of the graph are symmetric. Again, we can ignore the

process number (1 and 2). If we ignore the process number on the edges, we may

simplify/generalize the graph and substitute it with a simple combined graph as in

Figure 5: Here, on an NFA graph the state 0011 and an edge P() or V() may result

either in a state 0010 or again in a state 0011. For this reason, an NFA has been ap-

plied. All P() operations around the 0011 state increase the size of the waiting

queues, while the V() operations decrease it. Only the last process in a waiting queue

allowed to a CS will change the state from 0011 (where B is equal 1) to a new state

0010 (B is equal 0). This happens through execution of a V() operation. A transfer

from the state 1000 (or from the state 0100) to a deadlock state is obtained by a se-

quence: 2P(Q) then 1P(S) or 1P(S) and then 2P(Q).

The simplified graph does not make this distinction and identifies the two

process numbers. Similarly, this identification could be extended further to any

number of processes, while a graph would remain the same. The above method also

applies to the codes with shared CS.

B. Schreyer, K. Kosinski

52

Figure 5. NFA graph combined for two processes

Table 2. NDFA. Transition function δ

Finite automata in software modeling with Semaphores and deadlock potential

53

4. NFA graph for any number of processes and semaphores.

Similarly to a situation depicted in Figure 2, let be given a system with m

processes and m semaphores. All the P and V operations are identical, except for the

semaphores. A prefix k in kP() is the number of a process, in which an operation

appears. A double index in a semaphore S(k,l) specifies a process Pl and a line of

code k, where a semaphore appears. Two semaphores, which have different indexes

(k,l), do not have to h. In most of cases, the semaphores in the same line of code k

and in a different processes Pn and Pm are the same: S(k,n)=S(k,m). Altogether

there are m semaphores and m processes.

In order to create a potential deadlock situation, we need the two semaphores,

say Sm,i and Sm-1,I in one process, say Pj to change their order with respect to another

process, say Pi. This is why the indexing of the two operations iP(Sm-1,i) and iP(Sm,i)

and the indexing of the semaphores do not follow any of the above rules. The sema-

phore indexes: (m,i) and (m-1,i) specify only that the semaphores are equal to the

semaphores in a process Pi, in the lines of code respectively m-1 and m (Figure 6).

If at a certain moment a iP(Sm-1,i) is executed in a process I, then a jP(Sm-

1,i) is executed in a process j.

Both semaphores: Sm-1,i and Sm, I become equal 0 and none of those two

processes can execute in CS. It is a deadlock situation.

P1 **P2** … **Pi** … **Pj** … **Pm**

1P(S1,1) 2P(S1,2) … .iP(S1,i). … jP(S1,j) … mP(S1,m).

1P(S2,1) 2P(S2,2) … iP(S2,i). … jP(S2,j) … ..

... … … … … … ..

.... … … ... … … ..

 …. ...

1P(Si,1) 2P(Si,2) … … … ..

... …. … … … … ..

1P(Sj,1) 2P(Sj,2) ... …

... … … iP(Sm-1,i) … jP(Sm,i) … ..

1P(Sm,1) 2P(Sm,2) … iP(Sm,i) … jP(Sm-1,i) … ..

------- CS ------- CS … -----CS … -----CS … -----CS

1V(S1.1) 2V(S1,2) … … … … mV(S1,m)

1V(S2,1) 2V(S2,2) … … … … ..

… … ... iV(Sm-1,i) ... jP(Sm,i)

1V(S m,1) 2V(Sm,2) … iV(Sm,i) … jV(Sm-1,j) … mP(Sm,m)

Figure 6. m processes and m semaphores with deadlock potential

B. Schreyer, K. Kosinski

54

The above situation is depicted with a graph in Figure 7.

In an initial state *11* 00 all semaphores are equal 1, CS=0 and B=0,

 an edge iP(s1,i) represents a P operation executed in a process i, on a

semaphore S1,

 an edge jP(s1,j) represents a P operation executed in a process j, on a

semaphore S1,

 an edge *P(Sk,l) represents a P operation in either process i or j, on any

semaphore, according to a scheduler,

 similar to the above is the indexing of the V operations.

In a state *….* 00 some semaphores become equal 0, as the process i and a

process j advance in execution. A semaphore Sk,l represents any semaphore, where

k,l ϵ (1,2,….,m-1,m). In a state 0…01 00 all semaphores but Sm are equal 0, while

in a state 0…10 00 all semaphores but Sm-1 are equal 0. The state 0…0 01 represents

a deadlock between processes i and j. If any of those processes is executing in CS,

any new process request will put this process on a waiting list. In a state 0…0 10

one process is in CS, while in a state 0…0 11 a new process is blocked. The bold

symbols and thick edges show the P operations causing directly a deadlock of the

two processes.

5. Conclusion

The FA method, useful in education, has been introduced. Our Computer

Science education program, especially the Operating Systems class, has been quite

successfully using this method, i.e. it helped the professors in explaining the OS

topics and helped students in better understanding of the concurrent software execu-

tion with deadlocks. Application of the FA (DFA and NFA) for the concurrent pro-

cesses modelling with binary semaphores is relatively simple. A simple compound

graph for many semaphores has been created.

Finite automata in software modeling with Semaphores and deadlock potential

55

Figure 7. A compound graph for any two processes Pi and Pj and any m semaphores

References

Arnold, A. (1994) Finite Transition Systems. Prentice Hall.

Beier, Ch. and Kaoten, J. (2008) Principles of Model Checking. The MIT Press.

Dragert C., Dingel J. and Rudie K. (2008) Generation of Concurrency Control Code using

Discrete-Event Systems Theory. Proceeding, SIGSOFT '08/FSE-16 Proceedings of

the 16th ACM SIGSOFT International Symposium on Foundations of software engi-
neering.

Hirst T., Yehezkael R.B. (formerly Haskell), Mendelbaum H.G. (2003) Some Theoretical
Results on Parallel Automata, Conflict, Complexity. JCT Research Report.

Lamport, L. (1974) A new solution of Dijkstra’s Concurrent Programming Problem. Com-
munications of the ACM 17,8 (August), pp. 453-455.

http://www.cc.gatech.edu/conferences/fse16/

B. Schreyer, K. Kosinski

56

Monzón A., Fernández J.L. and de la Puente J.A. (2011) Application of Deadlock Risk Eval-

uation of Architectural Models. Journal of Software Practice and Experience Article

first published online: 2 SEP 2011 DOI: 10.1002/spe.1118.

Rataj, A., Wozna, B. and Zbrzezny, A. (2009) A Translator of Java Programs to TADDs.

Fundam Inform., 93(1-3), pp. 305-324.

Schreyer, B. and Bozic, V. (2006) Deterministic finite automata for critical section modelling.
ACM SIGCSE 11th, Bologna, Italy, June 26-28.

Schreyer, B. and Kosinski, K. (2010) Critical resources software and control modeling with
finite automata. Theoretical and Applied Informatics 22(3), pp.155-163

Silberschatz, A., et al. (2012) Operating System Concepts. John Wiley & Sons Inc.

Sipser, M. (1997) Introduction to the theory of computation. PWS Publishing Company

Stolz V. (2007) Temporal Assertions for Sequential and Concurrent Programs. Thesis, RWTH
Aachen University, AIB-2007-15, August, http://aib.informatik.rwth-15.pdf.

Stotts P.D. , Pugh W. (1994) Parallel Finite Automata for Modeling Concurrent Software
Systems, Journal of Systems and Software.

Tanenbaum, S. and Bos, H. (2013) Modern Operating Systems. Pearson.

UPPAAL software (http://www.uppaal.org/)

